Search results for " hydrogen loading"

showing 2 items of 2 documents

Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors

2014

International audience; Raman Distributed Temperature Sensors (RDTS) offer exceptional advantages for the monitoring of the envisioned French deep geological repository for nuclear wastes, called Cigéo. Here, we present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with H2 or g-rays. Both of them are shown to strongly affect the temperature measurements made with RDTS. We showed that by adapting the characteristics of the used fiber for the sensing, we could limit its degradation but that additional hardening by system studies will have to be developed before integration of RDTS in Cigéo.

Optical fiberMaterials scienceHydrogenbusiness.industrychemistry.chemical_elementRadiation inducedTemperature measurementlaw.invention[SPI]Engineering Sciences [physics]symbols.namesakeRaman spectroscopy distributed temperature sensor optical fibers hydrogen loading radiation nuclear wastechemistrylawsymbolsOptoelectronicsFiberbusinessRaman spectroscopyHardening (computing)SPIE Proceedings
researchProduct

Radiation and Hydrogen-Loading effects on Raman fiber-based temperature sensors

2013

We present experimental studies on how Raman based temperature sensors undergone two different treatments: gamma-radiation and H-loading. Unfortunately, gamma radiation and hydrogen release in harsh nuclear environment can affect the temperature measurements based on this technology of sensor, limiting the sensor performances. Moreover, the Raman device response in both cases changes with the different classes of multimode fibers that are used by the engineers.

Raman spectroscopy distributed temperature sensor optical fibers hydrogen loading radiation
researchProduct